<wbr id="0p4dr"><legend id="0p4dr"></legend></wbr>
  • <wbr id="0p4dr"></wbr>

  • <sub id="0p4dr"><listing id="0p4dr"></listing></sub>
    <form id="0p4dr"><span id="0p4dr"><track id="0p4dr"></track></span></form>

    <sub id="0p4dr"></sub>
    <form id="0p4dr"></form>
      • 鈣鈦礦單晶薄膜的可控制備與太陽能電池器件研究獲進展
        發布者:化學研究所  發布時間:2017-01-18 09:52:19  訪問次數:5887

          近年來,能源需求的激增和空氣污染的加劇迫使人們尋求新的清潔可再生能源。太陽能被認為是最具發展前景的清潔可再生能源之一。太陽能電池是將太陽能直接轉化成電能的裝置,可以高效轉換并利用太陽能。除了目前主要的硅基太陽能電池外,探尋高效率且廉價的新型太陽能電池成為近年來的研究熱點。

          近年來有機無機雜化MAPbX3 (X=Cl, Br和I)鈣鈦礦材料由于其卓越的光電性能而受到廣泛關注;谶@類鈣鈦礦結構材料的薄膜太陽能電池短短幾年間在效率上頻頻突破,由2009年的不到4%迅速提升到了22.1%。除此之外,鈣鈦礦材料在激光、發光二極管、光電傳感器方面也有很大的應用前景。但到目前為止,通過各種工藝方法制備的鈣鈦礦太陽能電池光吸收層都是鈣鈦礦多晶薄膜,而多晶薄膜不可避免存在的晶粒邊界和表面缺陷導致載流子遷移率、壽命和擴散長度等重要參數下降。鈣鈦礦材料的體相單晶已被證明具有相比于多晶薄膜更低的缺陷態密度、更高的載流子遷移率和更長的載流子復合壽命等優勢。然而,由于該類材料本身具有較高的光吸收系數,常規方法制備的鈣鈦礦體相單晶厚度過大,會導致載流子復合概率增加,不適合用于直接制備太陽能電池等器件。

          中國科學院化學研究所分子納米結構與納米技術重點實驗室研究員胡勁松課題組科研人員在中國科學院戰略性先導科技專項和國家自然科學基金委的支持下,前期發展了適于制備較大面積鈣鈦礦吸收層并能改善其晶粒尺寸,從而提高電池轉換效率的方法(J. Mater. Chem. A, 2016, 4, 13458);研究了通過稀土元素摻雜改善介孔層能級從而提高電池效率的方法(Nanoscale, 2016, 8, 16881);并且利用掃描探針顯微技術研究了鈣鈦礦吸收層微觀形貌與其性能間的關系(ACS Appl. Mater. Interfaces, 2015, 7, 28518; ACS Appl. Mater. Interfaces, 2016, 8, 26002)。最近,研究人員在鈣鈦礦單晶薄膜的可控制備和性能研究方面取得新進展。研究人員發展了一種利用空間限域作用的溶液相方法,實現了在基底上原位制備毫米級高質量有機無機雜化MAPbX3 (X=Cl, Br, I)鈣鈦礦單晶薄膜。該方法制備的單晶薄膜厚度可以在幾十納米到幾微米范圍內可調,同時對基底無選擇性,可在柔性基底及表面粗糙度較高的材料等多種基底上原位生長,適宜于各種器件的制備(圖1)。這是首次獲得百納米級厚度適于直接制備太陽能電池等器件的較大面積單晶鈣鈦礦薄膜的報道。研究表明所制備單晶薄膜具有良好的結晶性,與基底接觸良好,并且具有與體相鈣鈦礦單晶相當的光學和電學性能(圖2),為進一步制備和研究鈣鈦礦單晶薄膜太陽能電池及其他單晶器件開辟了新的途徑。

         
          圖1 a-b) 單晶鈣鈦礦薄膜的SEM圖;c) 不同厚度單晶鈣鈦礦薄膜截面的SEM及AFM圖;d) 不同納米級厚度單晶薄膜的光學圖片。這種與厚度直接相關的顏色顯示為通過光學顯微鏡直接篩選合適厚度單晶薄膜用于器件的構筑提供了可能。

          

          圖2 a)旋轉角度同步輻射X射線衍射圖案;b) 同步輻射垂直單晶薄膜入射得到的衍射圖案;c) 制備原料,單晶粉末和單晶薄膜的XRD圖;d) 單晶薄膜的EBSD圖像;e) 單晶薄膜紫外可見吸收光譜及熒光發射光譜;f) SCLC方法測試的暗電流I-V曲線。
      來源:化學研究所
      免責聲明:焊材網轉載作品均注明出處,本網未注明出處和轉載的,是出于傳遞更多信息之目的,并不意味 著贊同其觀點或證實其內容的真實性。如轉載作品侵犯作者署名權,或有其他諸如版權、肖像權、知識產權等方面的傷害,并非本網故意為之,在接到相關權利人通知后將立即加以更正。聯系電話:0571-87774297。
      0571-87774297  
      91精品国产综合久久婷婷